Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)

First "Separate the Variables" by rearranging the equation to get the ys on the LHS and the xs on the RHS:

(1/y) dy=x dx

Now Integrate:

Integral(1/y) dy = Integral(x) dx

ln(y)=x2/2 + constant of integration (c)

Rearrange to get y=:

e(lny)=e(x2/2)+c

y=e(x^2/2)+c = e* ex^2/2 = Ae0.5x^2

This is your GENERAL SOLUTION (GS)

Now plug in the coordinates:

3=Ae0.50=A1=A

A=3

So:

y=3e0.5x^2

This is the PARTICUAR SOLUTION (PS) and also the answer to original question

CC
Answered by Christian C. Maths tutor

3855 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Explain briefly the Normal Distribution


Find the gradient of the curve y=sin(x^2) + e^(x) at the point x= sqrt(pi)


Given that the curve y = 3x^2 + 6x^1/3 + (2x^3)/3x^1, find an expression for the gradient of the curve.


How do I use product rule when differentiating?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning