Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)

First "Separate the Variables" by rearranging the equation to get the ys on the LHS and the xs on the RHS:

(1/y) dy=x dx

Now Integrate:

Integral(1/y) dy = Integral(x) dx

ln(y)=x2/2 + constant of integration (c)

Rearrange to get y=:

e(lny)=e(x2/2)+c

y=e(x^2/2)+c = e* ex^2/2 = Ae0.5x^2

This is your GENERAL SOLUTION (GS)

Now plug in the coordinates:

3=Ae0.50=A1=A

A=3

So:

y=3e0.5x^2

This is the PARTICUAR SOLUTION (PS) and also the answer to original question

Answered by Christian C. Maths tutor

3115 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove by induction that the nth triangle number is given by n(n+1)/2


Find the coordinates of the point of intersection of the lines y = 5x - 2 and x + 3y = 8.


Given that y = exp(2x) * (x^2 +1)^(5/2), what is dy/dx when x is 0?


Differentiate y=sin(x)/5x^3 with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences