What is the derivative of ln(x)?

First let y=ln(x).

Recall that the exponential function, ex, is defined as the inverse of the logarithmic function, ln(x).

To make x the subject of the formula, use the inverse function exp. This gives that x=ey.

Now, differentiate both sides with respect to y and recall that d/dx(ex)=ex. This gives dx/dy=ey.

Remember for a derivative, dy/dx=1/(dx/dy).

Therefore, dy/dx=1/ey.

Finally, from above, x=ey.

Substituting for ey we have dy/dx=1/x which is our final result.

Therefore the derivative of ln(x), is dy/dx=1/x.

Answered by Benjamin G. Maths tutor

5627 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The points A and B have coordinates (2,4,1) and (3,2,-1) respectively. The point C is such that OC = 2OB, where O is the origin. Find the distance between A and C.


Differentiate e^2x


How do I find the area under a curve between two points?


evaluate the integral 2x/((9+x^2)^1/2) between -2 and 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences