A cylindrical specimen of material with diameter 1.5x10^-4 has a breaking stress of 1.3GPa. Calculate the tensile force acting on the specimen at breaking point.

We first need to remember that stress is force over area. We can calculate the area using the diameter as the specimen is told to be cylindrical (circular cross-section). The area can be calculated using 0.25 x pi x d^2 where d=1.5x10-4, the answer is 1.767x10^-8. Now we can re-arrange the formula for stress to make force the subject: this gives force equals stress multiplied by area. The stress at breaking is given so the answer is achieved by multiplying 1.767x10^-8 by 1.3 GPa (1.3x10^9) giving roughly 23N.

Answered by Richard M. Physics tutor

9909 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The mass of the Earth is 6.0x10^24 kg and its radius is 6.4x10^6m, calculate the orbital speed of the moon around the earth, the orbit of the moon is a circle of approximate radius of 60R where R is the radius of the earth and a mass m.


A cyclist rides 10km. In the first 5km, they climb a hill, averaging 10km/h. In the second 5km, they descend the hill, averaging 30km/h. What is their average speed over the full 10km?


State Ohm's Law and the main characteristics of ohmic conductors, giving examples


What is the Schwarzschild radius of a black hole?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences