A cylindrical specimen of material with diameter 1.5x10^-4 has a breaking stress of 1.3GPa. Calculate the tensile force acting on the specimen at breaking point.

We first need to remember that stress is force over area. We can calculate the area using the diameter as the specimen is told to be cylindrical (circular cross-section). The area can be calculated using 0.25 x pi x d^2 where d=1.5x10-4, the answer is 1.767x10^-8. Now we can re-arrange the formula for stress to make force the subject: this gives force equals stress multiplied by area. The stress at breaking is given so the answer is achieved by multiplying 1.767x10^-8 by 1.3 GPa (1.3x10^9) giving roughly 23N.

RM
Answered by Richard M. Physics tutor

11185 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A child is standing on a walkway that is moving at 2 metres per second and decides to turn around and walk back to the start at 2 metres per second. Explain why the child cannot reach the start of the walkway at this speed.


Describe the principles of fission and fusion. With reference to the nuclear binding energy curve, explain how energy is released.


What determines the frequency of oscillation of a (loaded) spring?


How does stimulated emission work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning