A cylindrical specimen of material with diameter 1.5x10^-4 has a breaking stress of 1.3GPa. Calculate the tensile force acting on the specimen at breaking point.

We first need to remember that stress is force over area. We can calculate the area using the diameter as the specimen is told to be cylindrical (circular cross-section). The area can be calculated using 0.25 x pi x d^2 where d=1.5x10-4, the answer is 1.767x10^-8. Now we can re-arrange the formula for stress to make force the subject: this gives force equals stress multiplied by area. The stress at breaking is given so the answer is achieved by multiplying 1.767x10^-8 by 1.3 GPa (1.3x10^9) giving roughly 23N.

Answered by Richard M. Physics tutor

9021 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How would I derive Kepler's third law from Newton's law of gravitation and the equations of circular motion?


What is the angular speed of a car wheel of diameter 0.400m when the speed of the car is 108km/h?


What are the similarities and differences between an elastic and an inelastic collision?


Explain Rutherford's atomic model experiment


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences