The line y=5-x intersects the curve y=x^2-3x+2 at the points P and Q. Find the (x,y) coordinates of P and Q.

Step 1: To find the points of intersection, we must find where the y and x values are equal. Therefore 5-x=x2-3x+2 where the y-values are equal.

Step 2: Rearrange the above into the quadratic equation x2-2x-3=0 by adding -x and subtracting 5 from both sides.

Step 3: Factorise the equation to find the x-values where the lines intersect. This gives (x+1)(x-3)=0.

Step 4: This shows that x+1=0 and x-3=0, therefore x=-1 or 3.

Step 5: Find the y-values that correspond to the above x-values. When x=-1, y=5-(-1)=6 and when x=3, y=5-3=2. Therefore P and Q are the points (-1,6) and (3,2)

Answered by Georgina B. Maths tutor

19146 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate xsin(x) with respect to x


A curve has equation y = x^3 - 48x. The point A on the curve has x coordinate -4. The point B on the curve has x coordinate - 4 + h. Show that that the gradient of the line AB is h^2 - 12h.


How do polar coordinate systems work?


It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences