Find the set of values of k for which x^2 + 2x+11 = k(2x-1)

The discriminant for a quadratic polynomial of the form f(x) = ax^2 + bx + c is given by b^2 - 4ac. If the discriminant is strictly greater than 2, the quadratic has 2 real distinct roots, i.e 2 unique x-values for which f(x) = 0. This fact can be used to solve the question. First of all, rearrange the above quadratic and equate to 0. Next use the equation of the discriminant to get a polynomial in k. Find the critical values of k and hence calculate the constraints on k. (1) X^2 + (2-2K)X + (11+K) = 0; (2) 4k^2 - 12k - 40 > 0, k^2 - 4k - 10 > 0; (3) k < -2, k > 5

Answered by William A. Maths tutor

13058 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to factorise 6x^2-11x-10?


Sketch the graph y=-x^3, using this sketch y=-x^(1/3)


A quantity N is increasing with respect to time, t. It is increasing in such a way that N = ae^(bt) where a and b are constants. Given when t = 0, N = 20, and t = 8, N = 60, find the value: of a and b, and of dN/dt when t = 12


how do you differentiate tan(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences