Solve the simultaneous equations: 4x + y = 25, x - 3y = 16

We need to have either the same number of x's or the same number of y's in each equation so that we can add or subtract them to be left with just x or just y. We can do this by multiplying the second equation by 4:

4x - 12y = 64

Now both equations have "4x" in them, so if we subtract one from the other we will get rid of the x's and be left with just y's.

                4x + y = 25

MINUS     4x - 12y = 64

EQUALS         13y = -39

We then divide both sides of the equation to find what y equals:

y = -39/13 = -3

Now we substitute our value for y back into one of the equations to find what x is.

x - 3(-3) = 16

x + 9 = 16

x = 16 - 9 = 7

We can check our answers by substituting both the x and y values into the two equations. If the equations both balance then our answers are correct!

Answered by Lydia H. Maths tutor

32085 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the inverse of f(x) = 7x+4


Nadia has £5 to buy pencils and rulers. Prices: Pencils - 8p each Rulers - 30p each She says, "I will buy 15 pencils Then I will buy as many rulers as possible With my change I will buy more pencils." How many pencils and how many rulers does she


A GCSE is graded out of 140 marks. 1/5 of these marks were given for coursework. The rest were divided between two reading and listening tests, with the marks split in the ratio 3:4 respectively. How many marks were given for the reading test?


Trigonometry: what is it, and how do I do it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences