Solve the simultaneous equations: 4x + y = 25, x - 3y = 16

We need to have either the same number of x's or the same number of y's in each equation so that we can add or subtract them to be left with just x or just y. We can do this by multiplying the second equation by 4:

4x - 12y = 64

Now both equations have "4x" in them, so if we subtract one from the other we will get rid of the x's and be left with just y's.

                4x + y = 25

MINUS     4x - 12y = 64

EQUALS         13y = -39

We then divide both sides of the equation to find what y equals:

y = -39/13 = -3

Now we substitute our value for y back into one of the equations to find what x is.

x - 3(-3) = 16

x + 9 = 16

x = 16 - 9 = 7

We can check our answers by substituting both the x and y values into the two equations. If the equations both balance then our answers are correct!

Answered by Lydia H. Maths tutor

32093 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Calculate 64^2/3. (No calculator)


2x + 7y = 14 and x + y = 2. Find the value of x and y which satisfy both equations.


Express 300 as a product of its prime factors.


There are 10 boys and 20 girls in a class. The class has a test. The mean mark for all the class is 60. The mean mark for the girls is 54. Work out the mean mark for the boys.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences