Find the indefinite integral of ( 32/(x^3) + bx) over x for some constant b.

To integrate (32/ x3 + bx) over x we can integrate each part separately. This is because addition of two integrals is the same as integrating the total of the elements. 

So we integrate 32/x3 first, see that 32/x3 = 32 * x-3. Which we integrate as such -32/2 * x-2  because when we integrate x the power is raised by 1 so -3 goes to -2. Now we must find the new coefficient such that when x-2 were differentiated we get 32 as the resulting coefficient for x-3. This gives the new coefficient -32/2 as -32/2*-2=32. This gives the integral as -16/x2. Now integrate bx. Given the power is raised by 1 the new power is 2 and then to find the new coefficient we must find coeff such that coeff*2 = b. This means that the new coefficient is b/2. This gives the integral as b/2 *x2.

Now we add them back together to find the original integral we get -16/x2 + b/2 *x2 +c. Don't forget the +c! (We need the constant becuase it is an indefinite integral meaning there are no bounds.)

BO
Answered by Becky O. Maths tutor

3335 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many roots does the equation x^2 = x + 12 have and what are they?


Integrate: xe^x


How do you find the acute angle between two intersecting lines whos equations are given in vector form?


What is differentiation and how is it done?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning