If y=x^3+9x, find gradient of the tangent at (2,1).

To find the gradient of the tangent, we can differentiate to give dy/dx=3x^2+9. We can now put in x=2 to find the gradient at (2,1): 3(2)^2+9=21. Therefore the gradient is 21 at (2,1).

AM
Answered by Angus M. Further Mathematics tutor

2631 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Point A lies on the curve y=3x^2+5x+2. The x-coordinate of A is 2. Find the equation of the tangent to the curve at the point A


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


Rationalise and simplify (root(3) - 7)/(root(3) + 1) . Give your answer in the form a + b*root(3) where a, b are integers.


find the stationary point of the curve for the equation y=x^2 + 3x + 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning