If y=x^3+9x, find gradient of the tangent at (2,1).

To find the gradient of the tangent, we can differentiate to give dy/dx=3x^2+9. We can now put in x=2 to find the gradient at (2,1): 3(2)^2+9=21. Therefore the gradient is 21 at (2,1).

Related Further Mathematics GCSE answers

All answers ▸

Point A lies on the curve y=3x^2+5x+2. The x-coordinate of A is 2. Find the equation of the tangent to the curve at the point A


Given y=x^3-x^2+6x-1, use diffferentiation to find the gradient of the normal at (1,5).


Prove that tan^2(x)=1/(cos^2(x))-1


Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences