Differentiate with respect to x y=(x^3)ln2x

To be able to differentiate this we need to use the product rule as we want to differentiate two functions multiplied together. The product rule states that if y=uv, then : dy/dx= u dv/dx + v du/dx. Let u= x^3 and v= ln2x. Then du/dx= 3x^2 and dv/dx= 2/2x. Putting this together using the formula gives: dy/dx= x^3 * 2/2x + ln2x * 3x^2. This simplifies to dy/dx= 3x^2ln2x+x^2

Answered by Jennifer P. Maths tutor

11406 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Pushing a mass up a slope and energy


Solve the simultaneous equations: y - 3x + 2 = 0 y^2 - x - 6x^2 = 0


How do you complete the square?


find the integral of 1+3 root x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences