Differentiate with respect to x y=(x^3)ln2x

To be able to differentiate this we need to use the product rule as we want to differentiate two functions multiplied together. The product rule states that if y=uv, then : dy/dx= u dv/dx + v du/dx. Let u= x^3 and v= ln2x. Then du/dx= 3x^2 and dv/dx= 2/2x. Putting this together using the formula gives: dy/dx= x^3 * 2/2x + ln2x * 3x^2. This simplifies to dy/dx= 3x^2ln2x+x^2

JP
Answered by Jennifer P. Maths tutor

12369 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate by parts?


A curve, C, has equation y =(2x-3)^5. A point, P, lies on C at (w,-32). Find the value of w and the equation of the tangent of C at point, P in the form y =mx+c.


Solving harder exponential equations, e.g. 5/[exp(x) + 6exp(-x)] - 1 = 0 . CORE MATHS.


A curve has the equation y = (x^2 - 5)e^(x^2). Find the x-coordinates of the stationary points of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning