Given that the equation of the curve y=f(x) passes through the point (-1,0), find f(x) when f'(x)= 12x^2 - 8x +1

Firstly, Integrate the f'(x) equation by raising the power by 1 and then dividing by the new power and adding a constant c. This gives you f(x)=(12x^3)/3 -(8x^2)/2 + x + c Then you simplify, f(x)=4x^3 -4x^2 + x + c Insert your y and x values to find c, 0= 4(-1) - 4(1) -1 + c Therefore c= 9 and f(x)= 4x^3 -4x^2 + x + 9

Answered by Daniel M. Maths tutor

13092 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you factorise quadratic, cubic functions or even quartic functions?


Find the derivative of f(x)=x^2log(2x)


Show that the line y = x - 7 does not meet the circle (x + 2)^2 + y^2 = 33.


The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences