Given that the equation of the curve y=f(x) passes through the point (-1,0), find f(x) when f'(x)= 12x^2 - 8x +1

Firstly, Integrate the f'(x) equation by raising the power by 1 and then dividing by the new power and adding a constant c. This gives you f(x)=(12x^3)/3 -(8x^2)/2 + x + c Then you simplify, f(x)=4x^3 -4x^2 + x + c Insert your y and x values to find c, 0= 4(-1) - 4(1) -1 + c Therefore c= 9 and f(x)= 4x^3 -4x^2 + x + 9

Answered by Daniel M. Maths tutor

13025 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Factorise x^3+3x^2-x-3


Prove algebraically that n^3+3n^2+2n+1 is odd for all integers n


When solving a trigonometric equation, like sin(x) = -1/3 for 0 ≤ x < 2π, why do I get an answer outside the range? Why are there many correct answers for the value of x?


Prove the property: log_a(x) + log_a(y) = log_a(xy).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences