integrate by parts ln(x)/x^3

The question states to use integration by parts. So first we recall the integration by parts formula is integrate(u(x)v'(x)  dx)=     (v(x)u(x))    -    integrate(u'(x)v(x)   dx)+c (note these integrals are with respect to x.. u(x) v(x) are functions of x and u'(x)=du/dx). To integrate ln(x)/x^3 notice that ln(x)/x^3 can be written as ln(x)*1/x^3. Then we let u(x)=ln(x) as we can differentiate ln(x) to 1/x but cannot easily integrate ln(x). So v(x)=1/x^3 Putting this into the formula we get integrate(ln(x)/x^3  dx)=  -0.5x^(-2) *ln(x)-integrate(-0.5x^(-2)*x^(-1)  dx)+c=  -0.5ln(x)/x^2+1/(4x^2)+c

Answered by Prit S. Maths tutor

3155 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

ln(2x^2 + 9x – 5) = 1 + ln(x^2 + 2x – 15). Express x in terms of e


Prove cosec2A-cot2A=tanA


OCR C2 2015 Question 8: (a) Use logarithms to solve the equation 2^(n-3) = 18,000 , giving your answer correct to 3 significant figures. (b) Solve the simultaneous equations log2(x) + log2(y) = 8 & log2(x^2/y) = 7.


Explain briefly the Normal Distribution


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences