integrate by parts ln(x)/x^3

The question states to use integration by parts. So first we recall the integration by parts formula is integrate(u(x)v'(x)  dx)=     (v(x)u(x))    -    integrate(u'(x)v(x)   dx)+c (note these integrals are with respect to x.. u(x) v(x) are functions of x and u'(x)=du/dx). To integrate ln(x)/x^3 notice that ln(x)/x^3 can be written as ln(x)*1/x^3. Then we let u(x)=ln(x) as we can differentiate ln(x) to 1/x but cannot easily integrate ln(x). So v(x)=1/x^3 Putting this into the formula we get integrate(ln(x)/x^3  dx)=  -0.5x^(-2) *ln(x)-integrate(-0.5x^(-2)*x^(-1)  dx)+c=  -0.5ln(x)/x^2+1/(4x^2)+c

Answered by Prit S. Maths tutor

3156 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the indefinite integral of f(x)=(1-x^2)/(1+x^2)


Given that y = 16x^2 + 7x - 3, find dy/dx [3 marks]


Water is flowing into a rightcircular cone at the rate r (volume of water per unit time). The cone has radius a, altitude b and the vertex or "tip" is pointing downwards. Find the rate at which the surface is rising when the depth of the water is y.


Integrate the following fraction w.r.t. x: (sqrt(x^2 + 1)-sqrt(x^2 - 1))/(sqrt(x^4 - 1))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences