Using integration by parts, and given f(x) = 3xcos(x), find integrate(f(x) dx) between (pi/2) and 0.

We begin by quoting the integration by parts formula, as the question speciaficaly asks us to use it.

integrate(u(x) v'(x) dx)|^(b)(a) = [u(x) v(x)]^(b)(a) - integrate(u'(x) v(x) dx)|^(b)_(a)

To use this formula, we therefore have to split f(x) = 3xcos(x) into the product of u(x) and v'(x), with a view of differentiating u(x), and integrating v'(x). The natural split for f(x) is into 3x and cos(x). Now, for integrating by parts questions, if you are able to 'get rid of a power of x into a constant', i.e. produce a constant by differentiating u(x), then it is a good idea to do it. So in this case we see that selecting u(x) = 3x will allow us to get the constant 3 when we differentiate. We also check that v'(x) = cos(x) can be integrated easily, which is can. Therefore we select

u(x) = 3x, v'(x) = cos(x)

and by differentiating u and integrating v we see

u'(x) = 3, v(x) = sin(x)

The question also gives us that we are integrating between (pi)/2 and 0. Therefore the limits of our integration will be

a = 0, b = (pi)/2

We now substitute these expressions into our by parts formula, so

integrate(u(x) v'(x) dx)|^(b)(a) = [u(x) v(x)]^(b)(a) - integrate(u'(x) v(x) dx)|^(b)_(a)

becomes

integrate(3xcos(x)dx)|^(pi/2)(0) = [3xsin(x)]^(pi/2)(0) - integrate(3sinx dx)|^(pi/2)_(0)

The LHS is what we want to find. Considering the RHS, we yeild

3(pi/2)sin(pi/2) - 3(0)sin(0) - [-3cos(x)]^(pi/2)_(0) = ((3pi)/2)sin(pi/2) - (-3cos(pi/2) - - 3cos(0))

as the integral of sinx is -cosx. Now, sin(pi/2) = 1, sin(0) = 0, cos(pi/2) = 0, cos(0) = 1 are simply trig identities. Therefore we are left with

 (3pi)/2 - (0 + 3) = 3( (pi/2) - 1)

as our final answer, as this is equal to 

integrate(3xcos(x)dx)|^(pi/2)(0)  = integrate(f(x) dx)|^(pi/2)(0)

as required.

Answered by Aaron C. Maths tutor

2877 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of a line is y=e(^2x)-9 and the line has points at (0,a) and (b,0). Find the values of a and b.


The line AB has equation 5x + 3y + 3 = 0 and it intersects the line with equation 3x - 2y + 17 = 0 at the point B. Find the coordinates of B.


The line L has equation 7x - 2y + 11 = 0, Find the gradient of l


How to sum an arithmetic progression?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences