A mass, m, is resting on a slope being slowly tilted upwards from horizontal. The static friction co-efficient is 0.3 and the dynamic friction co-efficient is 0.2: at what angle will the mass begin to slip?

The static friction force holding the object on the slope is given by Fr where R = mg by Newton's second law of motion. We use a < sign as the static friction is a reaction force And the force dragging it down the slope is the component of the weight parrallel to the slope given by W(par)=mgsin(theta) While horizontal, the mass will not slip down the slope as sin(0)=0 so W(par)=0 - there is no force acting in this direction. The mass will slip when the component of the weight acting down the slope exceeds the force available from friction. So the angle we are looking for is when: Fr = W(par) Thus we re-write the equations above as: u(s)mgcos(theta) = mgsin(theta) if we divide by cos(theta) and move all the constants to the other side we have: tan(theta) = u(s)mg/(mg) the mg cancels out and we are left with: theta = tan^-1(u(s)) theta=11.3 degrees The dynamic friction will limit the movement of the mass once it moves from rest, and so the same calculation needs to be repeated with the dynamic friction co-effictient to check that it is lower. However, since the co-efficient is smaller we know that this is uneccessary and the final answer is 11.3 degrees

Answered by Amber P. Physics tutor

2274 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the maximum length a bungee rope with a spring constant of 100 Nm−1 can be for an 80kg man to be able to jump from 100m above a river without touching the water?


What is the angular speed of a car wheel of diameter 0.400m when the speed of the car is 108km/h?


From what height, h, should a rail-cart fall to complete a loop-the-loop of radius r without falling off a the track? Assume the track on which the rail-cart travels is smooth and express h in terms of r.


What is the definition of a moment?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences