A Curve has parametric equation x=2sin(t), y= 1+cos(2t), -pi/2<=t<=pi/2. a) Find dy/dx when t=pi/3. b) Find the Cartesian equation for the curve in form y=f(x), -k<=x<=k. c) Find the range of f(x)

x=2sin(t), y=1+cos(2t)

a) By chain rule, dy/dx = (dy/dt)/(dx/dt)
dy/dt = -2sin(2t), dx/dt= 2cos(t)
dy/dx= -sin(2t)/cos(t)
dy/dx=-2sin(t)cos(t)/cos(t)
dy/dx=-2sin(t)

when t = pi/3, 
dy/dx= -sqrt(3)

b) dy/dx = -2sin(t)= -x
y= -x^2/2

k=2 as x=2sin(t) has max and min values at 2, -2

c) Draw a sketch
Sketch shows symmetrical quadratic with min value 0, max values of 2. 
0<=f(x)<=2

Answered by Max B. Maths tutor

9497 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that 3^(-3/2) = a* 3^(1/2), find the exact value of a.


A cannonball is fired at an angle of 30 degrees and a velocity of 16 m/s. How long does it take (to 2 significant figures) for the cannonball to reach the ground?


At what point(s) do lines y = x^2 - 5x - 14 and y = 3x + 2 intersect? Write your answer in surd form


Use logarithms to solve the equation 2^5x = 3^2x+1 , giving the answer correct to 3 significant figures.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences