A Curve has parametric equation x=2sin(t), y= 1+cos(2t), -pi/2<=t<=pi/2. a) Find dy/dx when t=pi/3. b) Find the Cartesian equation for the curve in form y=f(x), -k<=x<=k. c) Find the range of f(x)

x=2sin(t), y=1+cos(2t)

a) By chain rule, dy/dx = (dy/dt)/(dx/dt)
dy/dt = -2sin(2t), dx/dt= 2cos(t)
dy/dx= -sin(2t)/cos(t)
dy/dx=-2sin(t)cos(t)/cos(t)
dy/dx=-2sin(t)

when t = pi/3, 
dy/dx= -sqrt(3)

b) dy/dx = -2sin(t)= -x
y= -x^2/2

k=2 as x=2sin(t) has max and min values at 2, -2

c) Draw a sketch
Sketch shows symmetrical quadratic with min value 0, max values of 2. 
0<=f(x)<=2

Answered by Max B. Maths tutor

9894 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first and second derivative of f(x) = 6/x^2 + 2x


A curve has equation y = f(x) and passes through the point (4, 22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7, use integration to find f(x), giving each term in its simplest form


Integrate y with respect to x, where y = cos(x)/[1+tan^2(x)]


Differentiate y = 2x^3 + 6x^2 + 4x + 3 with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences