Integrate 2x/(x^2+3) using the substitution u=x^2+3

u=x2 + 3

du/dx=2x

dx=du/2x

2x/(x2+3) dx becomes (2x/u) * (du/2x)

the 2x terms cancel out giving 1/u du

this integrates to ln(u)+c becoming ln(x2+3)+c

Answered by Tom S. Maths tutor

11994 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How exactly does integration by parts work?


Integrate (1 - x^2)^(-0.5)dx within the limits 0 and 1


Event A: a customer asks for help. Event B a customer makes a purchase. We know: p(B) = 0.2 and p(A) knowing that he has asked for help is 75%. What is the probability of a customer to ask for help and make a purchase?


A quantity N is increasing with respect to time, t. It is increasing in such a way that N = ae^(bt) where a and b are constants. Given when t = 0, N = 20, and t = 8, N = 60, find the value: of a and b, and of dN/dt when t = 12


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences