Differentiate f(x) = (x+3)/(2x-5) using the quotient rule.

For a quotient f(x) = u(x)/v(x), the derivative is f'(x) = (vu'(x) - uv'(x))/v(x)2. Applying this to the given function, we find u(x) = x+3 and v(x) = 2x-5. So, u'(x) = 1 and v'(x) = 2. We can then put these into the expression for the quotient rule: f'(x) = ((2x-5)*1 - (x+3)*2)/(2x-5)= (2x - 5 - 2x - 6)/(2x-5)2 = -11/(2x-5)2.

Answered by Sara R. Maths tutor

4763 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you work out the equation of the normal at a point (2,5) given the equation of a line?


Sketch the graph y=Ax^2 where A is a constant


How to integrate lnx by parts?


Given y=2x(x^2-1)^5, show that dy/dx = g(x)(x^2-1)^4 where g(x) is a function to be determined.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences