An aeroplane lands on the runway with a velocity of 50 m/s and decelerates at 10 m/s^2 to a velocity of 20 m/s. Calculate the distance travelled on the runway.

Firstly, we note that the acceleration is constant, therefore this problem should be tackled with the SUVAT equations. Let's write down the information we have: s  we are asked to find this u = 50 m/s v = 20 m/s a = -10 m/s2 (note that the plane is decelarating, hence the acceleration is negative!) t  no information about time Let's write down the SUVAT equations, that we should know by heart: v = u + at s = ut + ½at2 s = ½(v + u)t v2 = u2 + 2as We have no information about t, therefore we will use the last equation. By inverting it we should come up with: s = 1/(2a) · (v2 - u2) = 1/(2 · (-10 m/s2)) · (400 m2/s2 - 2500 m2/s2) = 105 m In the end is always a good idea to make a couple sanity check: 1) Does the result have the correct unit of measurement --> Yes, meters is the unit of distance 2) Does the result seem intuitively reasonable? --> Yes We can now say we have solved the problem! :)

PF
Answered by Paolo F. Physics tutor

8600 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The braking distance of a road train travelling at 15m/s is 70m. Assuming that the same braking force is applied at all speeds, show that the braking distance of a road train when travelling at 25m/s is about 190m.


A stationary unstable neutral particle decays into 2 separate particles with equal mass and velocity, what might the resulting bubble chamber diagram look like?


How can I measure the orbital period of a satellite around Earth?


Is a photon a wave or a particle??


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences