This question must be attempted by integration by parts since it cannot be integrated outright and we can thus change the integral to 1 times lnx. We can then use the formula for integration by parts of I(integral of the function)=u.v-(v.du/dx)dx. We set u to be equal to lnx and dv/dx to be equal to 1. We can differentiate lnx easily to become 1/x for du/dx, then we can integrate dv/dx to become x. By the formula we get (xln(x)-(1dx), then the integral of 1 is simply x and since the function has no limits we must add a +c for a constant. Thus the function is equal to (xln(x)-x+c)