A bag contains red discs, white discs and blue discs. 1/6 of the discs are red, 1/4 of the discs are blue. What is the smallest possible number of white discs?

We are given the fractions representing the number of discs in the bag. When comparing fractions, we should first find a common denomenator for them. The smallest common denomenator for 6 and 4 is 12 (43=12; 62=12). When converting fractions, remember the rule "Whatever we do to the bottom, we must do to the top." This means that 1/6 = 2/12 and 1/4 = 3/12. Now we add these two fractions together to get 5/12. This means that out of 12 discs in the bag, 5 of them are red and blue. This would allow us to work out the white discs to be 12-5=7 discs.

Answered by Grimonia C. Maths tutor

5517 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Five Chocolate bars cost £11. Three Chocolate Bars and two packs of Biscuits cost £13.6. How much does two Chocolate bars and one pack of biscuits cost.


There are "n" sweets in a bag, six are orange and the rest are yellow. If you take a random sweet from the bag and eat it. Then take at random another one and eat it. The probability of eating two orange sweets is 1/3. Show that n²-n-90=0.


If a line t (f(x) = 2x +3) is perpendicular to a line n that passes through point (3,7), what is the equation of line n?


2x^2 - 16x + 32


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences