Given that y=(4x+1)^3*sin(2x) , find dy/dx

y=(4x+1)^3*sin(2x) - this is a product of two functions of x. It can be rewritten as y = u(x)*v(x)   ; where u(x) = (4x+1)^3 and v(x) = sin(2x)

Using the product rule: dy/dx = u'(x)*v(x) + v'(x)*u(x) where the ' (prime) notation denotes the differential with respect to x

u'(x) = 34(4x+1)^2   and  v'(x) = 2*cos(2x)   using either substitution or simplification rules for both

Therefore, using product rule, dy/dx=[ 34(4x+1)^2 ] * [ sin(2x) ]  +  [ 2*cos(2x) ] * [ (4x+1)^3 ] 

which simplifies to: dy/dx = 2(4x+1)^3*cos(2x) + 12(4x+1)^2

CD
Answered by Chris D. Maths tutor

3403 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = 3x^2(x+2)^6 at the point (-1,3), in the form y = mx+c


If n is an integer such that n>1 and f(x)=(sin(n*x))^n, what is f'(x)?


How to differentiate a bracket raised to a power i.e. chain rule


f(x) = x^3 + 3x^2 + 5. Find f'(x) and f''(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning