Differentiate with respect to x: w=4x^2 + 3sin(2x)

We will split this up and differentiate each part separately.

We can differentiate 4x2 using our normal rules for differentiating; we multiply the coefficient by the power and then subtract one from the power. This gives us; 4x2=8, x2-1=x1 => 8x1 which can be written as 8x.

To differentiate 3sin(2x) we have to use the product rule. The product rule states that if y=uv, then : dy/dx= u dv/dx + v du/dx. In this case our y=3sin(2x), so we have u=3 and v=sin(2x), we differentiate and find that du/dx=0, because 3 is a constant, and we find that dv/du=2cos(2x). Now using the product rule we find dy/dx=3x[2cos(2x)]+[2cos(2x)]x0=6cos(2x)+0 = 6cos(2x). 

Bringing both parts together we get  dw/dx=8x + 6cos(2x)

Answered by Emma M. Maths tutor

4852 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why/How does differentiation work?


Why do we have to add the +c when integrating a function


The General Form of the equation of a circle is x^2 + y^2 + 2gx +2fy + c = 0. Find the centre of the circle and the radius of the circle in terms of g f and c.


A particle of weight 15N is resting on a plane inclined at an angle of 30°. Find : a) the normal force exerted on the particle, b) the coefficient of friction between the particle and the plane, providing it is in limiting equilibrium


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences