For a curve of equation 2ye^-3x -x = 4, find dy/dx

here the student needs to use both implicit differentiation and the product rule.

I would differentiate term by term for this problem.

for 2ye^-3x you have to use the proudct rule. uv differentiates to uv' +u'v 

so the above differentiates to -6ye^-3x +2(dy/dx)e^-3x

-x differentiates to -1

4 is a constant so differentiates to 0.

leads to ; -6ye^-3x +2(dy/dx)e^-3x -1=0

which can be written as 2(dy/dx)e^-3x = 6ye^-3x +1

leads to dy/dx= (6ye^-3x +1)/2e^-3x =(e^3x)/2 + 3y

Answered by Jack B. Maths tutor

3361 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let w, z be complex numbers. Show that |wz|=|w||z|, and using the fact that x=|x|e^{arg(x)i}, show further that arg(wz)=arg(w)+arg(z) where |.| is the absolute value and arg(.) is the angle (in polar coordinates). Hence, find all solutions to x^n=1 .


What is the "chain rule"?


Differentiante y = arctan(c)


How do I find the distance between two point in the plane?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences