Integrate cos(4x)sin(x)

The easiest way of approaching this question is to use De Moivre's formula: e^(inx) = cos(nx) + isin(nx) from which it is simple to show that cos(nx) = (e^(inx) + e^(-inx)) / 2 and sin(nx) = (e^(inx))- e^(-inx)) /2i therefore, cos(4x)sin(x) = (e^(4ix) + e^(-4ix)) * ((e^(ix)) - (e^(-ix)) / 4i= [e^(5ix) - e^(-5ix) - e^(3ix) + e^(-3ix)] / 4i= sin(5x)/2 - sin(3x)/2Finally, integrating, this gives cos(3x)/6 - cos(5x)/10 + integration constantThis can also be done by using various trigonometric identities, however this method is simpler and can continue to be applied to more complex questions. 

Related Further Mathematics A Level answers

All answers ▸

In simple harmonic motion, where would the object have the largest speed. If the angular velocity is 2 rad s^-1, and the amplitude is 1m, what is the largest speed obtained by the object?


Find the cube roots of unity.


Find the complex number z such that 5iz+3z* +16 = 8i. Give your answer in the form a + bi, where a and b are real numbers.


Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences