Integrate cos(4x)sin(x)

The easiest way of approaching this question is to use De Moivre's formula: e^(inx) = cos(nx) + isin(nx) from which it is simple to show that cos(nx) = (e^(inx) + e^(-inx)) / 2 and sin(nx) = (e^(inx))- e^(-inx)) /2i therefore, cos(4x)sin(x) = (e^(4ix) + e^(-4ix)) * ((e^(ix)) - (e^(-ix)) / 4i= [e^(5ix) - e^(-5ix) - e^(3ix) + e^(-3ix)] / 4i= sin(5x)/2 - sin(3x)/2Finally, integrating, this gives cos(3x)/6 - cos(5x)/10 + integration constantThis can also be done by using various trigonometric identities, however this method is simpler and can continue to be applied to more complex questions. 

Related Further Mathematics A Level answers

All answers ▸

Sketch the curve y= ((3x+2)(x-3))/((x-2)(x+1)) and find values of y for which y>=3


It is given that f(x)=(x^2 +9x)/((x-1)(x^2 +9)). (i) Express f(x) in partial fractions. (ii) Hence find the integral of f(x) with respect to x.


Express (X²-16)/(X-1)(X+3) in partial fractions


write 2-2i in its modulus argument form


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences