A ball is dropped from rest from a window 3m above ground height. How long will it take the ball to hit the ground? (You may assume air resistance on the ball is negligible.)

This is a very common mechanics question you can be asked in a physics exam (or a M1 maths exam!). The key to solving it is to realise that the ball is in freefall, so it is only acted on by gravity. Since this is a constant force (F=mg), the acceleration of the ball will be constant (a=g). Therefore the "SUVAT" equations (the equations of motion for an object under constant acceleration) may be used to solve this. First, write out everything you know and everything you are trying to find: u = 0  ms-1 (ball dropped from rest), a = g = 9.81 ms-2, s = 3 m, v: ?, t: need to find. Next, look at all the SUVAT equations and figure out which ones are relevant: s = ut + 0.5at2 , v = u + at , s = 0.5(u+v)t and v2  = u2 + 2as.

We need to find t. But we don't know what v is, so we need to find an equation that includes t but not v. s = ut + 0.5at2 clearly works. u = 0, so s = 0.5at2. Rearranging this gives t=(2s/g)0.5 = (2*3/9.81)0.5 = 0.782 s

Answered by Metha P. Physics tutor

3566 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An engineering student found that the Youngs modulus of an alloy was 2.8 x 10^11 Pa. The 1.5m wire of the allow increased in length by 0.24% during an experiment. Calculate the stress on the wire.


A cable with a diameter of 6mm is used to lift crate. Calculate the mass of the crate required to create a stress of 350 MPa.


How do you work out the work out the current through resistors in parallel?


A wire has length l, cross-sectional area a, resistivity p and resistance R. It is compressed to a third of its original length but its volume and resistivity are constant. Show its new resistance is R/9.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences