How to use the quadratic formula, using the following equation: x^2 + 3x - 4

To begin you must identify the co-efficients of each x term, essentially what number comes before x2 , x and the integer value.

a = 1, b = 3, c = -4 . We then substitute these values into the quadratic formula:  x = ( -b +- SQRT (b2 - 4ac) ) ÷ 2a . For the top half of the formula we end up with:  - 3 +- SQRT (32 - 4 x 1 x (-4)). This simplifies to -3 +- 5 = 2 or -8.

On the bottom of the formula we simply get 2 x 1 = 2. Therefore our 2 answers for x are x = 2 ÷ 2 or x = -8 ÷ 2 which results in x being equal to x = 1 or -4.

OB
Answered by Oliver B. Maths tutor

3062 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

15 machines work at the same rate, 15 machines can complete an order in 8 hours, however 3 of the machines break down after 6 hours. The other machines continue until the order is complete. In total how many hours does EACH machine work? (3 mark question)


a) Find the equation of the line that passes through (2,10) and (4,16) b) Find the point where the line in (a) intersects the line y=5x-2


Expand and Simplify (5x - 2y)^2


Express 6x^2+4x-1 in the form a(x+b)^2+c


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning