How to use the quadratic formula, using the following equation: x^2 + 3x - 4

To begin you must identify the co-efficients of each x term, essentially what number comes before x2 , x and the integer value.

a = 1, b = 3, c = -4 . We then substitute these values into the quadratic formula:  x = ( -b +- SQRT (b2 - 4ac) ) ÷ 2a . For the top half of the formula we end up with:  - 3 +- SQRT (32 - 4 x 1 x (-4)). This simplifies to -3 +- 5 = 2 or -8.

On the bottom of the formula we simply get 2 x 1 = 2. Therefore our 2 answers for x are x = 2 ÷ 2 or x = -8 ÷ 2 which results in x being equal to x = 1 or -4.

OB
Answered by Oliver B. Maths tutor

2993 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the domain and what is the range


John ran a race at his school. The course was measured at 450m correct to 2sf and his time was given at 62 econds to the nearest second. Calculate the difference between his maximum and minimum possible average speed. Round you answer to 3sf.


Sam uses 140g of flour to make 12 cakes. How much flour will Sam need to make 21 cakes?


Solve 3x^2 + 13x + 14 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning