Differentiate y=e^(x)*sin(x) with respect to x

y=e^(x)*sin(x)   

Use the product rule:   y'=uv'+vu'    y=u*v          

Differentiate: u=e^(x)   u'=e^(x)    v=sin(x)  v'=cos(x)

Sub into the product rule: y'=e^(x)*cos(x)+e^(x)*sin(x)

Take out a factor of e^(x): y'=e^(x)*(cos(x)+sin(x))

Answered by Alexander J. Maths tutor

4513 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u = 6 - x^2 to find the value of the integral of (x^3)/(sqrt(6-x^2)) between the limits of x = 1 and x = 2 (AQA core 3 maths


What is differentiation and why is it useful?


Integrate cos^2(x)


The point on the circle x^2+y^2+6x+8y = 75 which is closest to the origin, is at what distance from the origin? (Taken from an MAT paper)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences