Differentiate y=e^(x)*sin(x) with respect to x

y=e^(x)*sin(x)   

Use the product rule:   y'=uv'+vu'    y=u*v          

Differentiate: u=e^(x)   u'=e^(x)    v=sin(x)  v'=cos(x)

Sub into the product rule: y'=e^(x)*cos(x)+e^(x)*sin(x)

Take out a factor of e^(x): y'=e^(x)*(cos(x)+sin(x))

Answered by Alexander J. Maths tutor

4203 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is (x^3 - 7x^2 +13x - 6) divisible with (x-2)?


Find the 12th term and the sum of the first 9 terms on the following Arithmetic Progression: a = 2 and d = 3


How do you find the stationary points on a curve?


Integrate the following equation to find y: dy/dx = 3x^2 + 2x + 6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences