Differentiate y=e^(x)*sin(x) with respect to x

y=e^(x)*sin(x)   

Use the product rule:   y'=uv'+vu'    y=u*v          

Differentiate: u=e^(x)   u'=e^(x)    v=sin(x)  v'=cos(x)

Sub into the product rule: y'=e^(x)*cos(x)+e^(x)*sin(x)

Take out a factor of e^(x): y'=e^(x)*(cos(x)+sin(x))

Answered by Alexander J. Maths tutor

4516 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the reultant force acting on an object sitting on a slope?


How do I add up the integers from 1 to 1000 without going insane?


differentiate the equation f(x) = 3x^2+5x+3


Find the stationary point of the graph of y = 2x + 5 + 27x^(-2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences