Find the minimum value of the function, f(x) = x*exp(x)

The minimum value lies where the tangent to the curve has a gradient of zero and the curve approaching from both directions increases in value. This is done by finding the first and second derivatives of the function. df/fx = xexp(x)+exp(x) Set this equal to zero and solve for x: xexp(x)+exp(x)=0 exp(x) * (x+1)=0 The solution lies in one of the expressions exp(x) or (x+1) being equal to zero.exp(x)=0 has no solution, therefore only 1 solution when (x+1)=0, which is x=-1. We can check our solution is a minimum as d2f/dx2 > 0 for a minimum: d2f/dx2 = x*exp(x) + 2exp(x) @ x=-1 d2f/dx2= 0.368 hence a minimum. Finally, the value of the function at x=-1 is given by the function, f=-0.368

Answered by Robin T. Maths tutor

2749 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a derivative and how do we calculate it from first principles?


The curve C has equation y = 3x^4 – 8x^3 – 3. Find dy/dx.


A particle A of mass 0.1kg is moving at a speed of 1.5m/s to the right. It collides with a particle B of mass 0.3kg moving at a speed of 1.1m/s to the right. Calculate change in momentum of particle A if particle B has a speed of 1.4m/s after collision.


The Curve, C, has equation: x^2 - 3xy - 4y^2 +64 =0 Find dy/dx in terms of x and y. [Taken from Edexcel C4 2015 Q6a]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences