Integrate with respect to x ) dy/dx= 6x^5

The integral of any equation let the example be dy/dx = ax^n The integral of (RHS) dy/dx (because when we integrate we are integrating both sides) is y The integral of (LHS) ax^n is  [ax^(n+1)]/[n+1] when integrating there is always a constant that is unknown without any other equations that hold. Thus the integral is y= [ax^(n+1)]/[n+1] +C (Where C is a currently unknown constant)

NM
Answered by Nojus M. Maths tutor

4854 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the acute angle between the two lines... l1: r = (4, 28, 4) + λ(-1, -5, 1), l2: r = (5, 3, 1) + μ(3, 0, -4)


Find the equation of the line that is perpendicular to the line 3x+5y=7 and passes through point (-2,-3) in the form px+qy+r=0


Given that y = (sin(6x))(sec(2x) ), find dy/dx


find dy/dx where y = a^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning