Integrate with respect to x ) dy/dx= 6x^5

The integral of any equation let the example be dy/dx = ax^n The integral of (RHS) dy/dx (because when we integrate we are integrating both sides) is y The integral of (LHS) ax^n is  [ax^(n+1)]/[n+1] when integrating there is always a constant that is unknown without any other equations that hold. Thus the integral is y= [ax^(n+1)]/[n+1] +C (Where C is a currently unknown constant)

NM
Answered by Nojus M. Maths tutor

4971 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x+3)^(1/2) .dx


Find the derivative of sin(x)/x^3 with respect to x


Where do the kinematics equations (SUVAT) come from?


Solve the simultaneous equations: (1) y – 2x – 4 = 0 , (2) 4x^2 + y^2 + 20x = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning