A is a function of P . It is known that A is the sum of two parts, one part varies as P and the other part varies as the square of P . When P = 24 , A = 36 and when P = 18 , A = 9. Express A in terms of P .

Let A = aP + bP2 , where a and b are constants.
Sub. P = 24 , A = 36 ,
24a + 576b = 36
2a + 48b = 3 ………… (1)
Sub. P = 18 , A = 9 ,
18a + 324b = 9
2a + 36b = 1 ………… (2)
Solving (1) and (2)
a=-5/2

b=1/6

∴A=-5/2P + 1/6P2(square)

CY
Answered by Chun Yin L. Maths tutor

12614 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = (1 + 3x^2)^(1/3) , use the chain rule to find dy/dx in terms of x.


The curve has equation y = x^3 - x^2 - 5x + 7 and the straight line has equation y = x + 7. One point of intersection, B, has coordinates (0, 7). Find the other two points of intersection, A and C.


Differentiate with respect to x: 4(x^3) + 2x


A curve is defined by the parametric equations x = 2t and y = 4t^2 + t. Find the gradient of the curve when t = 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences