By consdering partial fractions find the integral of (1-x)/(5x-6-x^2) between x = 1 and x = 0, give your answer in an exact form.

The answer is Ln8/9, by first converting (1-x)/(5x-6-x^2) into partial fractions you get 1/(2-x) + 2/(x-3), the next step is a simple integration by inspection followed by log manipulations to get the final answer.

Answered by Omar A. Maths tutor

2831 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the straight line tangent to the curve y=2x^3+3x^2-4x+7, at the point x=-2.


A particle is moving in the with acceleration (2t - 3) ms^-2 and initial velocity 2ms^-1. Find the distance travelled when the velocity has reached 12ms^-1.


Curve C has equation x^2 - 3xy - 4y^2 + 64 = 0. a) find dy/dx in terms of x and y. b) find coordinates where dy/dx=0.


Integration of ln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences