By consdering partial fractions find the integral of (1-x)/(5x-6-x^2) between x = 1 and x = 0, give your answer in an exact form.

The answer is Ln8/9, by first converting (1-x)/(5x-6-x^2) into partial fractions you get 1/(2-x) + 2/(x-3), the next step is a simple integration by inspection followed by log manipulations to get the final answer.

OA
Answered by Omar A. Maths tutor

3290 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f(x) = 14*(x^2)*(e^(x^2))


What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


Differentiate y= (3x^2+2x-6)^8


Integrate the natural logarithm of x (ln x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning