Consider f(x)=a/(x-1)^2-1. For which a>1 is the triangle formed by (0,0) and the intersections of f(x) with the positive x- and y-axis isosceles?

We'll first compute these intersections by setting x=0 and y=0 consecutively. This gives y=a-1 and a/(x-1)^2-1=0. Hence we find (x-1)^2=a, so x=1+-sqrt(a). As we have a>1 and we want the intersection with the positive x-axis, we need x=1+sqrt(a). So our two intersections are (0,a-1) and (1+sqrt(a),0).

Now, as the angle at (0,0) is 90 degrees, we need the sides meeting at (0,0) to have the same length, as the third side will always be longer than the other two by the Pythagorean theorem. So, we need d((0,a-1),(0,0))=d((1+sqrt(a)),(0,0)). This gives a-1=1+sqrt(a). Now, as a>1, we can say a=b^2 for some b>0. This gives us b^2-1=1+b and hence b^2-b-2=0. This factorises to (b+1)(b-2)=0. Then, as b>0, we need b=2. This gives us a=4, the required a.

WV
Answered by Ward V. Maths tutor

2997 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x+3)/(x(x-3)) with respect to x


The equation f(x) =x^3 + 3x is drawn on a graph between x = 0 and x = 2. The graph is then rotated around the x axis by 2π to form a solid. What is the volume of this solid?


A block of mass M lies stationary on a rough plane inclined at an angle x to the horizontal. Find a general expression relating the coeffecient of friction between the block and the plane and the angle x. At what angle does the box begin to slide?


What is a limit?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences