Consider f(x)=a/(x-1)^2-1. For which a>1 is the triangle formed by (0,0) and the intersections of f(x) with the positive x- and y-axis isosceles?

We'll first compute these intersections by setting x=0 and y=0 consecutively. This gives y=a-1 and a/(x-1)^2-1=0. Hence we find (x-1)^2=a, so x=1+-sqrt(a). As we have a>1 and we want the intersection with the positive x-axis, we need x=1+sqrt(a). So our two intersections are (0,a-1) and (1+sqrt(a),0).

Now, as the angle at (0,0) is 90 degrees, we need the sides meeting at (0,0) to have the same length, as the third side will always be longer than the other two by the Pythagorean theorem. So, we need d((0,a-1),(0,0))=d((1+sqrt(a)),(0,0)). This gives a-1=1+sqrt(a). Now, as a>1, we can say a=b^2 for some b>0. This gives us b^2-1=1+b and hence b^2-b-2=0. This factorises to (b+1)(b-2)=0. Then, as b>0, we need b=2. This gives us a=4, the required a.

WV
Answered by Ward V. Maths tutor

3124 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact value of the integral of (2+7/x), between x=1 and x=e. Give your answer in terms of e.


A curve is defined by the parametric equations: X = 3 – 4t , y = 1 + (2/t) Find (dy/dx) in terms of t.


Differentiate y=(3+sin(2x))/(2+cos(2x))


(1.) f(x)=x^3+3x^2-2x+15. (a.) find the differential of f(x) (b.) hence find the gradient of f(x) when x=6 (c.) is f(x) increasing or decreasing at this point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences