how do I solve a quadratics equation

Take for example, the equation

13a   +   6a2   =   −6

rearrange the questions into the form         ax2+bx+c=0

6a2 + 13a + 6 = 0

method 1: cross-multiplication method

you use the cross multiplication method to find the common factors

3                      2

2                      3

____________________

3×2=6                        2×3=6

(you get 6a2)   (you get 6)

imagine a cross in the middle

3×3+2×2=13 (you reach the middle number 13a)

so you know this set of numbers are correct, so you can come to the answer

(3a+2) (2a+3)=0

JUST TO CHECK THAT YOU HAVE GOT A CORRECT ANSWER

you can check your work by expanding the brackets

like this

(3a+2)(2a+3)

=3a(2a+3)+2(2a+3)

=6a2+9a+4a+6   (simplify)

=6a2+13a+6  (same as the original question, so you know you have factorized it right)

àsolve the problem

3a+2=0 or 2a+3=0

a=    −⅔   or     −3/2

method 2: quadratic formula

if you find the cross-multiplication method too complicated, you can use the quadratic formula

6a2 + 13a + 6 = 0

           −b ± √(b2 − 4ac)
answers=   _____________________
                     2a

in this case,

a=6

b=13

c=6

(derived from the arranged form of the equation given)

substitute these numbers into the formula

answers

= (−13)+√(132−4(6)(6))   ÷2(6)        or      = (−13)+√(132−4(6)(6))   ÷2(6)

=    −⅔                                                        or     −3/2

for both methods, you get the same solutions

Answered by Helen W. Maths tutor

2625 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I solve an equation with both x and y variables (simultaneous equation)?


How do I solve the quadratic equation x^2+4x+3=0


Block 1 is 24mm long. Block 2 is 32mm long. Vignesh joins some type 1 blocks together to make a straight row. He then joins some type 2 blocks together to make a straight row of the same length. (a) Write down the shortest possible length of this row.


The are 10 coloured balls in a bag, 4 red, 3 green, 2 orange and 1 yellow. John picks out balls and replaces them one at a time. What is the probability that the first two he picks are red?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences