integrate with respect to x the function f(x)= xln(x)

Use integration by parts

let u=ln(x)

let dv/dx=x

therefore du/dx=1/x and v=(1/2)x^2

therefore the integral of xln(x) is equal to the following:

(1/2)x^2ln(x) - (integral with respect to x of:((1/2)x^2)/x)

= (1/2)x^2ln(x) - (integral with respect to x of:((1/2)x))

=(1/4)x^2(2ln(x)-1) + c

(I will explain further how I reached this answer during the session with provision of the whiteboard to evaluate my integrals) 

PJ
Answered by Priya J. Maths tutor

3126 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you intergrate ln(x)?


f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


find the integral of ((3x-2)/(6x^2-8x+3)) with respect to x between x=2 and x=1. (hint use substitution u=denominator)


Differentiate Y = 4X/(X^2+5) and give dy/dx in its simplest form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning