Given that y=((3x+1)^2)*cos(3x), find dy/dx.

As why is in the for y=uv where u and v are funtions of x, dy/dx=u'v+v'u (where ' implies the derivative) u=(3x+1)2, v=cos(3x) therefore using the chain rule u'=23(3x+1)=18x+6 and v'=-3sin(3x). Using this, dy/dy=(18x+6)*cos(3x)-3(3x+1)2*sin(3x)

Answered by William R. Maths tutor

3129 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

We are given y=(x^2)+3x-5. Find the derivative of y in terms of x.


express (3x + 5)/(x^2 + 2x - 15) - 2/(x - 3) as a single fraction its simplest form


How can I recognise when to use a particular method for finding an integral?


How do I do integration by parts?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences