Given that y=((3x+1)^2)*cos(3x), find dy/dx.

As why is in the for y=uv where u and v are funtions of x, dy/dx=u'v+v'u (where ' implies the derivative) u=(3x+1)2, v=cos(3x) therefore using the chain rule u'=23(3x+1)=18x+6 and v'=-3sin(3x). Using this, dy/dy=(18x+6)*cos(3x)-3(3x+1)2*sin(3x)

Answered by William R. Maths tutor

3272 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The function f is defined by f(x)= 2/(x-3) + x - 6 . Determine the coordinates of the points where the graph of f intersects the coordinate axes.


g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6


Evaluate the integral between 5 and 3 for xe^x


Show that tan(x) + cot(x) = 2cosec(2x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences