Find the exact solution, in its simplest form, to the equation 2ln(2x+1) - 10 = 0.

We want to "undo" every step of the equation until we have just x on one side. So first add 10 to each side and then divide both sides by 2 to give ln(2x+1) = 5. Take the exponential of each side to give 2x+1 = e^5. Finally subtract 1 and divide by 2 on each side resulting in x =(e^5 -1)/2.

EB
Answered by Eleanor B. Maths tutor

5036 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If z1 = 3+2i, z2= 4-i, z3=1+i, find and simplify the following: a) z1 + z2, b) z2 x z3, c)z2* (complex conugate of z2), d) z2/z3.


Find the solutions of the equation 3cos(2 theta) - 5cos(theta) + 2 = 0 in the interval 0 < theta < 2pi.


if f is defined on with f(x)=x^2-2x-24(x)^0.5 for x>=0 a) find 1st derivative of f, b) find second derivative of f, c) Verify that function f has a stationary point when x = 4 (c) Determine the type stationary point.


I don't understand how to visualise differentiation, please could you show my an example to allow me to understand what it actually is better?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning