Find the exact solution, in its simplest form, to the equation 2ln(2x+1) - 10 = 0.

We want to "undo" every step of the equation until we have just x on one side. So first add 10 to each side and then divide both sides by 2 to give ln(2x+1) = 5. Take the exponential of each side to give 2x+1 = e^5. Finally subtract 1 and divide by 2 on each side resulting in x =(e^5 -1)/2.

Answered by Eleanor B. Maths tutor

4414 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate an algebraic expression? (e.g. y=3x^4 - 8x^3 - 3) [the ^ represents x being raised to a power]


Differentiate x^(4) + x^(1/2) + 3x^(5)


Find the gradient of the exponential curve y(x)=(9e^(7x))/(12e^(2x)) at x=2/5


A curve passes through the point (4, 8) and satisfies the differential equation dy/dx = 1/ (2x + rootx) , Use a step-by-step method with a step length of 0.3 to estimate the value of y at x = 4.6 . Give your answer to four decimal places.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences