Find the exact solution, in its simplest form, to the equation 2ln(2x+1) - 10 = 0.

We want to "undo" every step of the equation until we have just x on one side. So first add 10 to each side and then divide both sides by 2 to give ln(2x+1) = 5. Take the exponential of each side to give 2x+1 = e^5. Finally subtract 1 and divide by 2 on each side resulting in x =(e^5 -1)/2.

EB
Answered by Eleanor B. Maths tutor

5248 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6


Differentiate y=sin(x)/5x^3 with respect to x


Integrate the following between 0 and 1: (x + 2)^3 dx


integration by parts: x^-2lnx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning