Solve the following inequality and shade the region to which it applies on a graph. 10x(squared) < 64x - 24

Step 1: Simplify the quadratic by dividing by 2. 5x2 < 32x - 12 Step 2: Move all terms onto one side of the quadratic. 5x2 - 32x + 12 < 0 Step 3: Factorise the quadratic. (5x - 2)(x - 6) < 0 Step 4: Graph and shade below the x axis to satisfy the inequality.

Answered by Thomas S. Maths tutor

3188 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For the function f(x) = 4x^3 -3x^2 - 6x, find a) All points where df/dx = 0 and b) State if these points are maximum or minimum points.


Differentiate the expression x^6+5x^4+3 with respect to x


Differentiate y=x^2+4x+12


If (m+8)(x^2)+m=7-8x has two real roots show that (m+9)(m-8)<0 where m is an arbitrary constant


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences