Solve the following inequality and shade the region to which it applies on a graph. 10x(squared) < 64x - 24

Step 1: Simplify the quadratic by dividing by 2. 5x2 < 32x - 12 Step 2: Move all terms onto one side of the quadratic. 5x2 - 32x + 12 < 0 Step 3: Factorise the quadratic. (5x - 2)(x - 6) < 0 Step 4: Graph and shade below the x axis to satisfy the inequality.

TS
Answered by Thomas S. Maths tutor

3765 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve 8(4^x ) – 9(2^x ) + 1 = 0


Consider the curve y=x/(x+4)^0.5. (i) Show that the derivative of the curve is given by dy/dx= (x+8)/2(x+4)^3/2 and (ii) hence find the coordinates of the intersection between the left vertical asymptote and the line tangent to the curve at the origin.


Use integration by parts to integrate the following function: x.sin(7x) dx


How do I find the turning points of a curve?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning