Why does e^ix = cos(x) + isin(x)

If you look at the Taylor series expansion of ex: ex = 1 + x + x2/(2!) + x3/(3!) + x4/(4!)...

If you then make this eix, you get

1+ix - x2/(2!) - ix3/(3!) + x4/(4!)...

If we split this into real and imaginary, we see the real part is

1 - x2/(2!) + x4/(4!) - x6/(6!)...

The series expansion of cos(x) is

1 - x2/(2!) + x4/(4!) - x6/(6!)...

Therefore, the real part of eix is cos(x)

If we look at only the imaginary part of eix, we get

i(x - x3/(3!) + x5/(5!) - x/ (7!)

If we look at the series expansion of sin(x) we get

(x - x3/(3!) + x5/(5!) - x/ (7!)

Therefore the imaginary part of eix = sin(x)

Putting this together, we get eix = Re(eix) + Im(eix)

eix = cos(x) + isin(x)

JP
Answered by Jesse P. Further Mathematics tutor

7236 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Are we able to represent linear matrix transformations with complex numbers?


3 points lie in a plane; P1=i+2j+3k, P2=-3i+5j+2k, P3=i+2j+k. Find the Cartesian equation of the plane


By Differentiating from first principles, find the gradient of the curve f(x) = x^2 at the point where x = 2


The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning