When is the inequality x^4 < 8x^2 + 9 true?

If we consider this like a normal quadratic problem, this becomes easy

x4 < 8x2 + 9

x4 - 8x2 - 9 < 0

(x2-9)(x2+1) < 0

This means there are roots of this expression at x2 = 9 and x2 = -1

Since for all reals, x2 > 0, we know the two roots of this expression are x=+-3

Now, since x4 - 8x2 - 9 is a quartic (ie, it has an x4 expression), we know that given any sufficiently positive or negative x, the quartic will be positive (ie, if x is 10000, or -10000)

Therefore, we know for this to be true, -3<x<3 (since we have found the solutions, we simply need to work out which regions satisfy the criteria)

Answered by Jesse P. MAT tutor

3498 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

I've been doing specimen MAT admission test - but I couldn't figure out the answer to the parts III, and IV of question 6 (https://www.maths.ox.ac.uk/system/files/attachments/speca.pdf). Is there some kind of a trick?


Let f(x) = 2x^3 − kx^2 + 2x − k. For what values of the real number k does the graph y = f(x) have two distinct real stationary points? (MAT 2017 q1.A)


Circle the correct letter: The equation x^3 - 30x^2 + 108x - 104 = 0 has a) No real roots; b) Exactly one real root; c) Three distinct real roots; d) A repeated root.


How do you solve hard integration questions using information you know


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences