If z1 = 3+2i, z2= 4-i, z3=1+i, find and simplify the following: a) z1 + z2, b) z2 x z3, c)z2* (complex conugate of z2), d) z2/z3.

(a) For part a, simply add the real terms together and the imaginary terms together. z1+z= (3+2i)+(4-i) = 7+i b).     

(b) For part b, multiply the brackets out, remembering that i2=-1. z2 x z3 = (4-i)(1+i) = 4 - i + 4i + 1 = 5+3i.      

(c) To find the complex conjugate, you just need to change the sign of the imaginary term. z2* = 4+i .     

(d) To find this, you need to use all of the previous skills. To simplify a complex fraction, you need to multiply both the numerator and denominator by the complex conjugate of the denominator. This results in the denominator having no imaginary terms. z2/z3 = (4-i)/(1+i) = (4-i)(1-i)/(1+i)(1-i) = (4-i-4i-1)/(1+i-i+1) = (3-5i)/2 = 3/2 + 5/2i.     

JS
Answered by Jaspa S. Maths tutor

12727 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I struggle with integration, and don't understand why we need to do it


The points P (2,3.6) and Q(2.2,2.4) lie on the curve y=f(x) . Use P and Q to estimate the gradient of the curve at the point where x=2 .


How do you know if a function is odd or even?


How do you find the acute angle between two intersecting lines whos equations are given in vector form?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences