The point A lies on the curve with equation y=x^0.5. The tangent to this curve at A is parallel to the line 3y-2x=1 . Find an equation of this tangent at A. [5 marks]

Differentiate equation

dy/dx=0.5*x-0.5

Gradient is the same as the second equation

2/3=0..5*x-0.5 

Solving this will give the x coordinate

x = 9/16 

Sub into equation for y coordinate

y = (9/16)0.5

Solve for C - constant (Y = Mx + C)

c = 3/4 - (2/3)*(9/16)

c = 3/8

Form equation

y = (2/3)x + 3/8

Answered by Arnold M. Maths tutor

5867 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The mass, m grams, of a substance is increasing exponentially so that the mass at time t hours is m=250e^(0.021t). Find the time taken for the mass to double in value.


Sketch the curve y = (x^2 - 9)(x - 2)


Calculate the gradient of the function y=x^2+6x when y=-9


A curve is defined by the parametric equations x = 2t and y = 4t^2 + t. Find the gradient of the curve when t = 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences