The point A lies on the curve with equation y=x^0.5. The tangent to this curve at A is parallel to the line 3y-2x=1 . Find an equation of this tangent at A. [5 marks]

Differentiate equation

dy/dx=0.5*x-0.5

Gradient is the same as the second equation

2/3=0..5*x-0.5 

Solving this will give the x coordinate

x = 9/16 

Sub into equation for y coordinate

y = (9/16)0.5

Solve for C - constant (Y = Mx + C)

c = 3/4 - (2/3)*(9/16)

c = 3/8

Form equation

y = (2/3)x + 3/8

AM
Answered by Arnold M. Maths tutor

6028 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x) = x * sin(2x). Find the area beneath the graph of y = f(x), bounded by the x-axis, the y-axis and the line x = π/2.


If f(x)=(4x^2)-(8x)+3, find the gradient of y=f(x) at the point (0.5,0)


Rewrite ... logF=logG+logH−log(1/M)−2*logR ... in the form F=... using laws of logarithms


Find the gradient of 4(8x+2)^4 at X coordinate 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences