How would you prove the 'integration by parts' rule?

This involves thinking about a well-known formula (the product rule) in a slightly different way. Looking at the product rule, for two functions u and v, (uv)' = uv' + vu'. We can rewrite this as uv' = (uv)' - vu'. Integrating both sides, we obtain integral of uv' = uv - integral of vu'.

Answered by Ethan R. STEP tutor

1621 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Differentiate: f(x)=(ax^2 + bx + c) ln(x + (1+x^2)^(1/2)) + (dx + e) (1 + x^2)^(1/2). Hence integrate i) ln(x + (1 + x^2)^(1/2)), ii) (1 + x^2)^(1/2), iii) x ln(x + (1 + x^2)^(1/2)).


Evaluate the integral \int \frac{x}{x tan(x) + 1} dx using integration by substitution, hence evaluate \int \frac{x}{x cot(x) - 1} dx.


Prove that any number of the form pq, where p and q are prime numbers greater than 2, can be written as the difference of two squares in exactly two distinct ways.


Show that i^i = e^(-pi/2).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences