The first thing to do for part a) is work out the vertical component of the velocity. By drawing a triangle where 30m/s is the hypotenuse with angles of 30 degrees, 90 degrees, and 60 degrees, and by applying the rule that sin(theta) = opposite/hypotenuse we can see that the vertical velocity will be 30sin30 which is 30 * 1/2 = 15 We can then use the SUVAT s=ut+1/2at^2. Substituting in our values for s (-10m), u (15ms^-1) and a (-g which is -9.8ms^-2) we can obtain a quadratic equation, solveable for t. -10 = 15t - 4.9t^2 -> 4.9t^2-15t-10 = 0 . Is is important that s and a have negative signs as our reference direction is upwards. We can either solve this using a graphical calculator, or by using the quadratic formula. This gives us our answer of (15+sqrt(15^2+44.910))/24.9 =3.62s (3sf). We knew to add the sqrt part of the equation because subtracting it would have given us a negative time which is impossible. We can check our answer by inputting our t into the equation and checking our s output. b) As we know t, we simply use distance=speedxtime to calculate the stone's horizontal displacement. This is because gravity acts purely downwards so the stone cannot accelerate horizontally. Speed = 30cos30 = 26.0 (3sf) which we know from our triangle earlier, so the displacement = 94.1m (3sf).