How would the integral ∫x^2sin2xdx be solved using integration by parts?

The general formula for integration by parts is given as
∫u(dv/dx)dx = uv - ∫v(du/dx)dx
given that the equation to be solved is ∫x2sin2xdx, the values for u, v, du/dx and dv/dx can be assigned as
u = x2 du/dx = 2x
v = (-1/2)cos2x dv/dx = sin2x
These values can then be plugged into the general formula to solve the integral
∫x2sin2xdx = (-1/2)x2cos2x + ∫xcos2x dx
the second integral is then solved. In this instance, integration by parts has to be used a second time. The new values for u, v, du/dx and dv/dx can be assigned as
u = x du/dx = 1
v = (1/2)sin2x dv/dx = cos2x
Therefore the integral can be solved as
∫x2sin2xdx = (-1/2)x2sin2x + (1/2)xsin2x - ∫(1/2)sin2x dx
= (-1/2)x2sin2x + (1/2)xsin2x + (1/4)cos2x + C

Answered by Samuel N. Maths tutor

9841 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does exp(x+y) NOT equal exp(x)+exp(y)? [A-level Maths and Further Maths common mistake]


Curves C1 and C2 have equations y= ln(4x-7)+18 and y= a(x^2 +b)^1/2 respectively, where a and b are positive constants. The point P lies on both curves and has x-coordinate 2. It is given that the gradient of C1 at P is equal to the gradient of C2 at P.


Find the indefinite integral ∫(x^2)*(e^x) dx (Edexcel C4 June 2013 Question 1)


How can do you factorize the equation x^2+6x+8


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences