Show that the sum from 1 to n of 1/(2n+1)(2n-1) is equal to n/(2n+1) by Induction

First we check that this is true for n=1: S1 = 1/(1x3)  which is equal to n/(2n+1) for n=1 therefore Sn = n/(2n+1) is true for n = 1. Next assume that it is true for n=k. Sk  = k/(2k+1). Now using this assumption we check that it is true for n=k+1: Sk+1 = Sk+ 1/(2(k+1) - 1)(2(k+1)+1). Rearranging this and substituting in k/(2k+1) for Sk we get Sk+1 = (k+1)/(2k+3) which is consistent with the original formula. Therefore we can say that since Sn = n/(2n+1) is true for n=1 and whenever it is true for n=k it is also true for n=k+1, it is true for all integer values of n larger than or equal to 1.

Related Further Mathematics A Level answers

All answers ▸

Differentiate arctan(x) with respect to x


Solve the following, giving your answers in terms of ln a: 7 sechx - tanhx =5


How do I know when I should be using the Poisson distribution?


find general solution to: x(dy/dx) + 2y = 4x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences