Show that the sum from 1 to n of 1/(2n+1)(2n-1) is equal to n/(2n+1) by Induction

First we check that this is true for n=1: S1 = 1/(1x3)  which is equal to n/(2n+1) for n=1 therefore Sn = n/(2n+1) is true for n = 1. Next assume that it is true for n=k. Sk  = k/(2k+1). Now using this assumption we check that it is true for n=k+1: Sk+1 = Sk+ 1/(2(k+1) - 1)(2(k+1)+1). Rearranging this and substituting in k/(2k+1) for Sk we get Sk+1 = (k+1)/(2k+3) which is consistent with the original formula. Therefore we can say that since Sn = n/(2n+1) is true for n=1 and whenever it is true for n=k it is also true for n=k+1, it is true for all integer values of n larger than or equal to 1.

JF
Answered by Jamie F. Further Mathematics tutor

14739 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How to solve a standard first order differential equation?


Prove by induction that (n^3)-n is divisible by 3 for all integers n>0 (typical fp1 problem)


A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.


a) Show that d/dx(arcsin x) = 1/(√ (1-x²)). b) Hence, use a suitable trigonometric substitution to find ∫ (1/(√ (4-2x-x²))) dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning