Differentiate 2x/cos(x)

Given that you have a fraction in the question, you are clearly asked to use the quotient rule. In order to do this, you should label the numerator u, and the denominator v, like this: u = 2x v=cos(x). Now, you should differentiate (multiply by the power and subtract 1 from the power) both of these to find u' and v'. For u, which is 2x^1, this is simply a question of removing the x, and so: u' = 2. For v, it is a matter of remembering the derivatives of trigonometric functions. In this case, the differential of cosx, v', is -sinx. And so we have:

u = 2x  v = cos(x)  u' = 2  v'= -sinx 

Now sub all of these into the quotient rule : (vu' - uv')/v^2 

This gives us (2cos(x) + 2xsin(x))/cos^2(x)

JS
Answered by James S. Maths tutor

8706 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y=x^3 +2x^2, find dy/dx . Hence find the x-coordinates of the two points on the curve where the gradient is 4.


An object of mass 3kg is held at rest on a rough plane. The plane is inclined at 30º to the horizontal and has a coefficient of friction of 0.2. The object is released, what acceleration does the object move with?


A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates of the points where this line intersects the axes


f(x) = 2x^3 – 7x^2 + 4x + 4 (a) Use the factor theorem to show that (x – 2) is a factor of f(x). (2) (b) Factorise f(x) completely.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning