Express 2cos(x) + 5sin(x) in the form Rsin(x + a) where 0<a<90

Expanding Rsin(x + a): Rsin(x + a) = Rsin(x)cos(a) + Rcos(x)sin(a) Comparing coefficients of sin(x), cos(x) with first expression leads to: Rsin(a) = 2, Rcos(a) = 5 Dividing these equations gives: tan(a) = 2/5 therfore a = arctan(2/5) Squaring and adding these equations gives: R^2(sin^2(a) + cos^2(a)) = 2^2 + 5^2 therefore R = root(29)

Answered by Dan H. Maths tutor

10087 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do changes to the coefficient of x affect the graph y = f(x) as opposed to changes to the coefficient of f(x)?


In a science experiment a substance is decaying exponentially. Its mass, M grams, at time t minutes is given by M= 300e^-0. 5t


Can you differentiate the following function using two methods:- y = e^(2x+1)


g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences