Express 2cos(x) + 5sin(x) in the form Rsin(x + a) where 0<a<90

Expanding Rsin(x + a): Rsin(x + a) = Rsin(x)cos(a) + Rcos(x)sin(a) Comparing coefficients of sin(x), cos(x) with first expression leads to: Rsin(a) = 2, Rcos(a) = 5 Dividing these equations gives: tan(a) = 2/5 therfore a = arctan(2/5) Squaring and adding these equations gives: R^2(sin^2(a) + cos^2(a)) = 2^2 + 5^2 therefore R = root(29)

Answered by Dan H. Maths tutor

9862 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate the natural logarithm ln(x)?


5Sin[x]-4=2Cos[2x]


F = 5i + 3j. Find the magnitude and direction of F?


Let f(x) = x * sin(2x). Find the area beneath the graph of y = f(x), bounded by the x-axis, the y-axis and the line x = π/2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences