Express 2cos(x) + 5sin(x) in the form Rsin(x + a) where 0<a<90

Expanding Rsin(x + a): Rsin(x + a) = Rsin(x)cos(a) + Rcos(x)sin(a) Comparing coefficients of sin(x), cos(x) with first expression leads to: Rsin(a) = 2, Rcos(a) = 5 Dividing these equations gives: tan(a) = 2/5 therfore a = arctan(2/5) Squaring and adding these equations gives: R^2(sin^2(a) + cos^2(a)) = 2^2 + 5^2 therefore R = root(29)

Answered by Dan H. Maths tutor

10445 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 16x + 1/x , find the two values of x for which dy/dx = 0


Integrate 5(x + 2)/(x + 1)(x + 6) with respect to x


Line AB has equation 4x+5y+2=0. If the point P=(p, p+5) lies on AB, find P . The point A has coordinates (1, 2). The point C(5, k) is such that AC is perpendicular to AB. Find the value of k.


Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences