solve 2cos^2(x) - cos(x) = 0 on the interval 0<=x < 180

we start  y factoring and solving for each equation:

cos(x) (2cos(x) - 1) = 0 

this means: 

cos(x) = 0 and cos(x) = 1/2

from the first equation we get:   x = 90

and from the second equation using the known trigonometric triangles we get

x = 60

therefore x = 60, 90 in the interval asked.

Answered by Dimitris S. Maths tutor

7837 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Expand and simplify (3 + 4*root5)(3 - 2*root5)


Find the stationary points of y= 5x^2 + 2x + 7


If x = cot(y) what is dy/dx?


Express (3 + 13x - 6x^2)/(2x-3) in the form Ax + B + C/(2x - 3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences