solve 2cos^2(x) - cos(x) = 0 on the interval 0<=x < 180

we start  y factoring and solving for each equation:

cos(x) (2cos(x) - 1) = 0 

this means: 

cos(x) = 0 and cos(x) = 1/2

from the first equation we get:   x = 90

and from the second equation using the known trigonometric triangles we get

x = 60

therefore x = 60, 90 in the interval asked.

Answered by Dimitris S. Maths tutor

7343 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show, by first principles, that the differential of x^2 is 2x.


What does differentiation actually do?


Find the value of 4!/0!


integrate 1/(x^2+4x+13)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences