solve 2cos^2(x) - cos(x) = 0 on the interval 0<=x < 180

we start  y factoring and solving for each equation:

cos(x) (2cos(x) - 1) = 0 

this means: 

cos(x) = 0 and cos(x) = 1/2

from the first equation we get:   x = 90

and from the second equation using the known trigonometric triangles we get

x = 60

therefore x = 60, 90 in the interval asked.

DS
Answered by Dimitris S. Maths tutor

8769 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f(x)= x^3 + x^(1/3)-2


Integrate xsin(x) with respect to x


F = 5i + 3j. Find the magnitude and direction of F?


Find the area between the positive x axis and the line given by y=-(x^2)+2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning