Using the result: ∫(2xsin(x)cos(x))dx = -1⁄2[xcos(2x)-1⁄2sin(2x)] calculate ∫sin²(x) dx using integration by parts

Recall that ∫uv'=uv- ∫u'v Set u=sin²(x), v'=1 Therefore u'=2sin(x)cos(x) and v=x which gives us the following:

∫sin²(x)dx = xsin²(x) - ∫2xsin(x)cos(x)dx

The second integral in the above expression is given in the question so we then have the form:

∫sin²(x)dx = xsin²(x) +1⁄2[xcos(2x)-1⁄2sin(2x)]

which can be rearranged to give:

∫sin²(x)dx = 1⁄2x[2sin²(x) + cos(2x)] - 1⁄4sin(2x) + c

We can then employ the identity: cos(2x) = cos²(x) - sin²(x) to give us:

∫sin²(x)dx = 1⁄2x[sin²(x) + cos²(x)] - 1⁄4sin(2x) + c

Finally the identity: sin²(x) + cos²(x) = 1 is used to produce:

∫sin²(x)dx = 1⁄2x- 1⁄4sin(2x) + c

where c is the constant of integration

NM
Answered by Nick M. Maths tutor

5191 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the roots of x^3 + 4x^2 - 5x


integrate x^2(2x - 1)


How do I know which method of diffirentiation to use?


When would you apply the product rule in differentiation and how do you do this?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences