Using the result: ∫(2xsin(x)cos(x))dx = -1⁄2[xcos(2x)-1⁄2sin(2x)] calculate ∫sin²(x) dx using integration by parts

Recall that ∫uv'=uv- ∫u'v Set u=sin²(x), v'=1 Therefore u'=2sin(x)cos(x) and v=x which gives us the following:

∫sin²(x)dx = xsin²(x) - ∫2xsin(x)cos(x)dx

The second integral in the above expression is given in the question so we then have the form:

∫sin²(x)dx = xsin²(x) +1⁄2[xcos(2x)-1⁄2sin(2x)]

which can be rearranged to give:

∫sin²(x)dx = 1⁄2x[2sin²(x) + cos(2x)] - 1⁄4sin(2x) + c

We can then employ the identity: cos(2x) = cos²(x) - sin²(x) to give us:

∫sin²(x)dx = 1⁄2x[sin²(x) + cos²(x)] - 1⁄4sin(2x) + c

Finally the identity: sin²(x) + cos²(x) = 1 is used to produce:

∫sin²(x)dx = 1⁄2x- 1⁄4sin(2x) + c

where c is the constant of integration

Answered by Nick M. Maths tutor

4948 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary point of the curve y=3x^2-2x+2 and state the nature of this stationary point.


Find exact solution to 2ln(2x+1) - 10 =0


differentiate the function (x^2 +5/x + 3) with respect to x


What is the equation of the tangent at the point (2,1) of the curve with equation x^2 + 3x + 4.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences