The gradient of a curve is defined as Dy/dx = 3x^2 + 3x and it passes through the point (0,0), what is the equation of the curve

Integrate this = (3x^3)/3 + (3x^2)/2 + c So y = x^3 + (3x^2)/2 + c Using point (0,0), 0 = 0 + 0 + c so c = 0. Full equation of the curve is therefore x^3 + (3x^2)/2

Answered by Laura T. Maths tutor

5487 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the integral of (6x^2 + 2/x^2 + 5) with respect to x?


Integrate tan(x)^2 with respect to x


Find the area between the curves C_1, C_2 and the lines x=0 and x=1, where C_1 is the curve y = x^2 and C_2 is the curve y = x^3.


Find the derivative of the equation y = x*ln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences