The gradient of a curve is defined as Dy/dx = 3x^2 + 3x and it passes through the point (0,0), what is the equation of the curve

Integrate this = (3x^3)/3 + (3x^2)/2 + c So y = x^3 + (3x^2)/2 + c Using point (0,0), 0 = 0 + 0 + c so c = 0. Full equation of the curve is therefore x^3 + (3x^2)/2

LT
Answered by Laura T. Maths tutor

5496 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove or disprove the following statement: ‘No cube of an integer has 2 as its units digit.’


A curve has parametric equations x= 2sin(t) , y= cos(2t) + 2sin(t) for -1/2 π≤t≤ 1/2π , show that dy/dx = - 2sin(t)+ 1


Why is there more than one solution to x^2 = 4?


A curve C has equation y = (2 - x)(1 + x) + 3 . A line passes through the point (2, 3) and the point on C with x-coordinate 2 + h . Find the gradient of the line, giving your answer in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences