Given the function f(x) = (x^2)sin(x), find f'(x).

The function f(x) is a product of 2 functions of x, so when we differentiate it, we need to use the product rule.

The product rule states that for a function f(x) = g(x)*h(x), f'(x) is given by g(x)*h'(x) + h(x)*g'(x).

If we break f(x) up into two parts and let g(x) = x2 and h(x) = sin(x) then we can find g'(x) and h'(x).

We find that g'(x) = 2x and h'(x) = cos(x). Substituting these values into the product rule, we get:

f'(x) = x2cos(x) + 2xsin(x).

Answered by Jason S. Maths tutor

9032 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the line 4x+9y=10.


(C3 question). Find an expression for all stationary points on the curve y=sin(x)cos(x). How many such points are there and why?


A circle A has equation x^2+y^2-6x-14y+54=0. Find a) the coordinates of the centre of A, b) the radius of the circle A.


Use the substitution u = cos 2x to find ∫(cos^2*(2x) *sin3 (2x)) dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences